
UNIVERSITY OF MEDICAL SCIENCES & TECHNOLOGY

FACULTY OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

Final Year Project

MOBI-COLLECT v.1.0: Textual Data Collection

using Mobile Phones

Submitted in partial fulfillment for the award of

The Degree of Bachelor of Science in

Computer Science and Information Technology

Submitted by

Shripal Parekh

CS2007-014

Supervisor: Dr.Mohammed Awad

UMST - 2009/2010

 1

Abstract

The usage of mobile phones is abundant in our daily lives in various aspects

from making phone calls or sending text messages to checking e-mails or news

updates to planning our activities or managing our budget.

This project aims at making use of this wide spread usage of mobiles to help in

the data collection process. It designs and develops a web based system called

“MobiCollect” that is used for creating forms or questionnaires to be later

accessed by the data collectors using their mobile phone web browser in order

fill in the form with the appropriate data.

Once the system design and implementation is completed it will be tested and

evaluated to ensure the satisfaction of at least the minimum requirements of the

proposed system.

 2

Acknowledgements

I would firstly like to thank my project supervisor, Dr. Mohammed Awad, for

answering all of my questions, keeping track on my progress and supporting me

throughout the project and having his trust in my ability to successfully deliver

it.

I would like to further extend my thanks to the whole teaching unit of the faculty

of Computer Science including my all time mentor Mr. Mohammed Izzeldin, for

all the guidance and advises provided during the project progress.

I am deeply grateful to my family and friends for their much appreciated

motivation and moral support.

Lastly, I want to acknowledge Dr. Joel Selainko – Co-founder of Episurveyor

which was the primary guideline I followed for this project and Dr. Joel

promptly answered my queries and gave valuable suggestions.

 3

Contents

1 INTRODUCTION 6

1.1 OVERVIEW 6

1.2 PROBLEM STATEMENT 6

1.3 PROJECT AIM 7

1.3.1 OBJECTIVES 7

1.3.2 SCOPE OF THE PROJECT 8

1.4 POSSIBLE ENHANCEMENTS 8

1.5 DELIVERABLES 8

1.6 METHODOLOGY 8

1.7 TOOLS AND TECHNIQUES 9

1.8 INITIAL PROJECT SCHEDULE 9

2 BACKGROUND RESEARCH 10

2.1 INTRODUCTION 10

2.2 MOBILE DEVICE TYPES 10

2.2.1 STANDARD MOBILE DEVICES 10

2.2.2 PDAS 10

2.2.3 SMART PHONE DEVICES 11

2.2.4 CONCLUSION 11

2.3 DEVELOPMENT ENVIRONMENT 12

2.4 W IRELESS WEB 13

2.5 DATABASE 13

2.6 HUMAN COMPUTER INTERACTION CONCERNS 14

2.6.1 LEARN-ABILITY 14

2.6.2 FLEXIBILITY 15

2.6.3 ROBUSTNESS 15

3 LITERATURE REVIEW 16

3.1 OVERVIEW 16

 4

3.2 EPISURVEYOR 16

3.3 MOBILE RESEARCHER 17

3.4 FRONTLINESMS 17

3.5 GENERAL COMPARISON MATRIX 18

3.6 COMPARED WITH MOBICOLLECT 19

4 ANALYSIS AND DESIGN 20

4.1 INTRODUCTION 20

4.2 FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS 20

4.2.1 FUNCTIONAL REQUIREMEN TS 20

4.2.2 NON-FUNCTIONAL REQUIREMEN TS 21

4.3 OOAD 22

4.3.1 UML 22

4.3.2 USE-CASE DIAGRAMS 23

4.3.3 CLASS D IAGRAM 26

4.3.4 ACTIVITY DIAGRAMS 27

4.3.5 SEQUENCE DIAGRAMS 29

4.3.6 COLLABORATION DIAGRAMS 31

5 IMPLEMENTATION 33

5.1 INTRODUCTION 33

5.2 PLAN AND METHODOLOGY 33

5.3 DESIGN ADDITIONS 34

5.4 WEBSITE INTERFACE 35

5.5 PROBLEMS ENCOUNTERED 36

5.5.1 A JAX CONTROLS DESIGN ISSUES 37

5.5.2 LACK OF VALIDATION SUPPORT 37

5.5.3 UNAVAILABILITY OF TOO LS FOR TESTING MOBIL E WEB PAGES 38

6 TESTING 39

6.1 INTRODUCTION 39

6.2 OPTIMAL PERFORMANCE 39

 5

6.3 FUNCTIONAL TESTING AND EVALUATION 40

6.3.1 LOGI N 40

6.3.2 REGIST R ATION 41

6.3.3 FOR GOT PAS SWO RD 42

6.3.4 HOMEPAGE 42

6.3.5 CR EAT E FO R M 43

6.3.6 CR EAT E CO LLECTO R 46

6.3.7 VI EW CO LLECT OR S 47

6.3.8 DAT A CO LLECTION 47

6.3.9 VI EW FO R MS 48

6.3.10 EXPO RT DAT A 49

6.3.11 ACCOUNT PA G E 50

6.4 SUMMARY 50

7 CONCLUSION AND FUTURE WORK 51

7.1 PROJECT ACHIEVEMENTS 51

7.2 CONCLUSION 51

7.3 RECOMMENDATION S FOR FUTURE WORK 52

 REFERENCES 53

 6

CHAPTER 1

INTRODUCTION

1.1 Overview

Mobile data collection is simply the process of using a mobile to record data.

Typically, the process occurs while the user is out "in the field", away from an

office or central location, where access to a main system or database is limited.

While the concept of using Mobile phones for surveys and data collection has

been around for some years now, its usage hasn't been very widespread until the

recent drop of mobile phone prices.

Once limited to large corporations and businesses using PDA (Personal Digital

Assistants) data collection technology, is now affordable for everybody including

students, researchers and small business owners - anybody using today’s mid-

range mobile phones not just the comparatively expensive PDAs.

1.2 Problem statement

The usage of traditional paper-based forms to collect data has several drawbacks

when it comes to quantitative data collection.

They are expensive, inefficient, and inflexible; moreover require costly and error-

prone data entry.

 7

1.3 Project Aim

The aim of this project is to overcome the paper-based data collection problems

by the usage of mobile technology.

This is to be achieved by development of a web application that allows user to

design and manage forms that are on the fly connected to the organization’s

database, and uploaded to mobile optimized web pages.

Main services where the project can show significance are: forms, questionnaires,

surveys and polls to be used by any organization requiring remote data

collection.

1.3.1 Objectives

Develop a web application for the research team to work on for the design of

forms/questionnaires and data management collected from the responses.

The designed forms should be made available on mobile web pages to the data

collectors; the data collected is stored in the corresponding database table created

together with the mobile web page (as shown in figure 1.1)

Fig 1.1 – System Architecture

 8

1.3.2 Scope of the Project:

The purpose of this project is to serve data collection that is primarily

quantitative in nature and is collected by remote capturers / fieldworkers or a

considerably big number of survey participants.

It does not aim at collecting qualitative data such as complex diagrams, long text

responses – for which paper based collection would be more appropriate.

1.4 Future Enhancements

The current system will allow the user to capture textual data – entered on the

mobile web browser. In future releases of MobiColelct some noteworthy

improvements to be expected are:

o Allow uploading Photos from the phone’s memory or taken via camera.

o GPS Data can also be obtained using particular mobile’s internal GPS

feature.

o The form creator interface in the website can be enhanced to implement

drag and drop features.

o Allow user to select fields in existing database tables of the organization to

insert data.

o Allow editing existing forms and backing up data already collected by

them.

1.5 Deliverables

At the end of this project, the below mentioned materials will be delivered:

 Working Software Implementation

 Project Thesis

 9

1.6 Methodology

Object-oriented technology will be used for developing MobiCollect. However,

the development will not be based on any particular methodology.

1.7 Tools and Techniques

 Microsoft Visual Studio 2008 will be used to develop the front-end for

MobiCollect using ASP.NET 3.5 with C# as the programming language.

 MS SQL Server 2008 Express will be used to develop the back-end for

MobiCollect

 Sparx Systems Enterprise Architect 7.5 will be used for UML 2.0 modeling.

1.8 Initial Project Schedule

The below figure 1.2 illustrates the tentative initial project schedule to

be followed.

Fig. 1.2 – Initial Project Schedule

 10

Chapter 2

BACKGROUND RESEARCH

2.1 Introduction

The following sections: Mobile Device Types, ASP.NET 3.5, MS SQL Database

2008, and Wireless Web are background topics with regard to the project.

2.2 Mobile Device Types

This section gives a very general overview on the differences amid the different

classes of mobile devices.

2.2.1 Standard Mobile Devices

In simple terms it is a long range portable device for telecommunications, with

capabilities that vary greatly between manufactures and models, some are

sophisticated and provide various features while others are offered at low price

range while providing the basic features. Some standards have been adopted by

manufacturers, such as embedded Java support, and standards for

sending/receiving various types of media, such as streaming video and graphical

formats. The display resolutions as well as the operating systems for mobile

phones vary greatly.

 11

2.2.2 PDA

PDA (personal digital assistant) is a term for any small mobile hand-held device

that provides computing and information storage and retrieval capabilities for

business or personal use, often for keeping schedule calendars and address book

information handy. Some PDA devices offer a variation of the MS Windows

operating system called Windows CE, and offer similar functionality to the

standard desktop version. [1]

2.2.3 Smart Phone Devices

A smart phone can be defined as a mobile device that integrates the functionality

of a mobile phone with that of a PDA or other type of computer device. [2] The

device usually carries an operating system such as Symbian or Microsoft’s

Windows Mobile. Devices of this nature also tend to have additional abilities

such as WLAN connectivity, data entry via touch screen/stylus, additional third

party applications can be easily installed and have a better screen resolution.

Smart phones also tend to carry greater processing power and storage capability

which give third party software developers great freedom and flexibility when

designing applications.

2.2.4 Conclusion

The key challenging task for generating the mobile web-pages is due to the

limitations and numerous variations inherent to standard mobile devices. This

concern is less relevant to PDA and smart phone devices that allow for great

compatibility due to the standardisation of operating systems conceded on a

large percentage of devices. There are various different screen resolutions

present;

 12

MobiCollect will be targeted at supporting the widespread resolutions: 128x160,

176x220 and 240x320 pixels (as shown in figure 2.1 from Chapter 4 of DotMobi

Mobile Web Developer Guide). [3]

Fig. 2.1 Screen Resolutions

2.3 Development Environment

This section gives a brief look into the development environment.

ASP.NET is a web application framework developed and marketed by Microsoft

to allow programmers to build dynamic web sites, web applications and web

services. [4]

.NET pages, known officially as "web forms", are the main building block for

application development. Web forms are contained in files with an ".aspx"

extension; these files typically contain static (X)HTML markup, as well as

markup defining server-side Web Controls and User Controls where the

developers place all the required static and dynamic content for the web page. It

allows and recommends using the dynamic program code i.e. the code-behind

model, which places this code in a separate file or in a specially designated script

http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Web_site
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/XHTML
http://en.wikipedia.org/wiki/HTML

 13

tag. Code-behind files typically have names similar to the content file (but with

the final extension denoting the programming language used - .cs or .vb).

2.4 Wireless Web

Wireless Application Protocol – A WAP gateway produces a more efficient

representation of the Web content that can be more easily transmitted over

wireless networks (as shown in figure 2.2). It has a very low airtime cost to

transmit the data using GPRS, EDGE or 3G connection.

Recently most of the smart mobile phones have wifi support, which enables

the mobile to make use of any available wireless networks in the range.

Would work out cheap connection as well but the mobile is comparatively

more costly than the standard mobiles. [5]

Fig 2.2 – Wireless Web

2.5 Database

A database can be understood as a collection of related files. How those files are

related depends on the model used. The relational database model was a huge

step forward, as it allowed files to be related by means of a common field. In

order to relate any two files, they simply need to have a common field, which

makes the model extremely flexible. [6]

http://www.wdvl.com/Authoring/DB/

 14

SQL Server Express is free for development and production for all users,

including individual developers and organizations. It allows the development of

high-performance applications that take advantage of the security, reliability,

and scalability of the SQL Server Database Engine.

2.6 Human Computer Interaction concerns

This section studies the HCI measures in order to ensure optimum system

usability. Full details on interface design and testing approaches will be explored

in the later sections in this report. In terms of background research into HCI this

section briefly outlines of three principles of usability – Learn-ability, Flexibility

and Robustness, although only aspects that are significant to the interface will be

listed. The HCI principles stated above will be taken into account for part of both

the design and evaluation stages of the web application. [7]

2.6.1 Learn-ability

How easily can a new user learn how to use the system? This involves many

factors as follows:

 Predictability – Is the result of any user action predictable?

 Synthesisability – Is there any feedback from the system to confirm if a

task is complete or not?

 Familiarity – Is the system familiar to a user from their previous

experiences?

 15

2.6.2 Flexibility

Does the interface support a variety of interaction styles?

 User initiative – Is the user able to initiate any valid action whenever they

desire? An issue of who is in control, the user or the machine. This is not

incredibly relevant to the interface but worth mentioning for

completeness.

2.6.3 Robustness

Does the system give back adequate feedback to the user to confirm what is

happening?

 Observable – Does the system display enough information to allow the

user to know what is going on?

 Responsiveness – Does the system respond to user actions in a reasonable

amount of time?

 16

CHAPTER 3

LITERATURE REVIEW

3.1 Overview

Today, mobile phones are such a familiar part of our lives that we don’t only use

them for simply talking or texting others but in many other aspects like

entertainment, work or surfing internet.

We take it for granted that we can talk to other people at any time, from

wherever we may be; we are beginning to see it as normal that we can access

information, take photographs, record our thoughts with one device, and that we

can share these with our friends, colleagues or the wider world.

Moreover, as the technology advances the mobile content keeps getting richer

and more easily shared over the internet this leads to the new concepts of using

mobile phones for various applications. The rest of this chapter discusses the

stand of the art project which uses mobile technology as a data collection tool.

3.2 Episurveyor

 DataDyne’s EpiSurveyor is an open-source mobile technology software program

that enables public health workers to easily create handheld data entry forms,

collect data on mobile devices and transfer the information back to a desktop or

laptop for analysis. For this innovation and its impact on the developing world,

the Lemelson-MIT Program has awarded Episurveyor the 2009 $100,000

Lemelson-MIT Award for Sustainability, an award that recognizes and supports

inventors or innovators whose work enhances economic opportunities and

community well-being. Officially established as an electronic data collection

standard by the World Health Organization, EpiSurveyor is now the most

widely adopted open source mobile health software in the world. [8]

 17

3.3 Mobile Researcher

A recent entry into the mobile data collection market, Mobile Researcher is an

end-to-end data collection service rather than a user-managed application.

Mobile Researcher handles all the system configuration and data management -

all you need to do is choose your options, train your data collectors and then sit

back and wait until you have enough data to export for analysis.[9]

This software-as-service model means that you pay no setup costs, but instead

are charged per completed form submitted to the system (using 'credits' bought

from the company). You are also responsible for data transmission costs from the

sender's phone, using either SMS or the much cheaper GPRS options. [9]

3.4 Frontline SMS

At Stanford University a group of students founded FronlineSMS:Medic, an

organization aimed “to advance healthcare networks in underserved

communities using innovative, appropriate mobile technologies.” For this

purpose the organization developed a free, open-source software platform to

enable “large-scale, two-way text messaging using only a laptop, a GSM modem,

and inexpensive cell phones.”[10]

The FrontlineSMS software installed on a laptop, it allows sending and receiving

of SMS messages to any mobile phone. It essentially transforms any laptop into a

mobile phone itself, acting as a hub for messages from multiple users with cell

phones. [10]

http://www.populi.net/mobileresearcher/
http://medic.frontlinesms.com/

 18

3.5 General Comparison Matrix

Table 3.1 below compares the currently existing famous mobile data collection

services [10]:

Table 3.1 – Mobile Data Collection Services Comparison Matrix

 Developed By Runs on Service

Model

System

Components

Java Rosa Java Rosa open

source

community,

Open Rosa

Consortium

All bit very

low-end Java

phones

Free/Open

source

Client and data

transmission,

forms designer

and data

analysis

planned for late

2009

RapidSMS UNICEF and

open source

community

All phones,

Java not

required

Free/Open

source

End-to-end

FrontlineSMS Kiwanja.net Java phones

including low

end

Free to NGOs,

open source

(except for

forms client)

End-to-end

Mobile

Researcher

Clyral All Java phones Hosted

solution / pay

End-to-end

EpiSurveyor Datadyne Java phones /

Smartphones

Free, open

source (desktop

app) / free and

paid,

proprietary

(web based)

Data collection,

transfer, forms

designer, GPS

Nokia Data

Gathering

Nokia Nokia

Smartphone

Free for NGOs End-to-end,

GPS

MobiCollect UMST - Shripal All GPRS (wap)

enabled phones

Academic Project End-to-end, web-

based forms

designer, data

collector

accounts, view

and export data

 19

3.6 Summary

Comparing the existing services with MobiCollect (as shown in Section 3.5), the

main difference is the tools that are used for the development.

The interface of the Web Application at the server resembles the Episurveyor.

However, both are totally different in terms of implementation where

Episurveyor is built based on the Javarosa while MobiCollect will be

implemented as ASP.Net Web Application with back-end support of the MS SQL

2008 Express. At the data collector end – Episurveyor requires the installation of

Java Application on the mobile phone which can then be used to fill the forms

after searching over the internet and retrieving them whereas MobiCollect

uploads the forms to the web server as .NET mobile web pages that can simply

be accessed using the mobiles’ in built WAP-browser/Web-browser.

 20

CHAPTER 4

ANALYSIS AND DESIGN

4.1 Introduction

This section outlines the functional and non-functional requirements and

describes the system’s scenarios using UML diagrams (use cases, activity, class,

collaboration and sequence diagrams where appropriate).

This chapter also describes and justifies the system architecture solution and the

design of each part of the system developed.

4.2 Functional and Non-Functional Requirements

Functional Requirements define what function a system or its component should

perform. Functional Requirements are supported by Non-Functional

requirements that define how the function should be performed i.e. they impose

quality requirement/constraints on the implementation or design.

4.2.1 Functional Requirements

1. User can create a new form.

2. User can select the type for each question in the form.

3. User can view the data captured for a particular form.

4. User can browse existing forms.

5. User can search existing forms by keywords.

6. User can delete records from the data.

7. User can delete forms and their data.

8. User can retrieve form on mobile phone web-browser via internet.

9. User can fill the form from mobile phone browser.

 21

10. User is authenticated using username and password before the web

application client can be used.

11. Data collector is authenticated using username and password before

being able to retrieve forms on the mobile phone.

12. User can change account details and password once logged in.

13. User can view date of each captured data.

14. User can view data collector’s name for each record.

15. User can create new data collector accounts.

4.2.2 Non-Functional Requirements

1. Security:

The system must be secure from unauthorized access, meaning that parts

of the system should only be available to users with a valid username and

password. The data stored about the systems users must be protected so

that only system administrators can view the stored data and the

passwords must be stored as a hashed value so that if the database

becomes exposed users’ passwords are not revealed.

2. Usability:

The web-client should be as easy as possible to be used by the user and

due to the diversity of mobile phones the mobile pages interface should be

kept as simple and neat as possible. To avoid extra data transfer cost as

well as difficulty in viewing the forms. Overall simplicity and user-

friendly interface is required.

3. Scalability:

It is important that the system is scalable to expansion as more users use

the system and the demand reaches a critical point where an expansion is

needed in the future, the system should be scalable to this required

expansion without the need of re-writing large portions of the system.

4. Data Integrity:

Tied in with the security element, the system has a number of data entry

points, each of these points must be validated to ensure only correct valid

data is every written to the database.

 22

4.3 Object Oriented Analysis and Design (OOAD)

OOAD is a software engineering approach that models a system as a group of

interacting objects. Each object represents some entity of interest in the system

being modeled, and is characterized by its class, its state (data elements), and its

behavior. [11]

Object-oriented analysis (OOA) applies object-modeling techniques to analyze

the functional requirements for a system. Object-oriented design (OOD)

elaborates the analysis models to produce implementation specifications. OOA

focuses on what the system does, OOD on how the system does it. [11]

4.3.1 Unified Modeling Language (UML)

UML is a standardized general-purpose modeling language in the field of

software engineering. The standard is managed, and was created by, the Object

Management Group. UML includes a set of graphical notation techniques to

create visual models of software-intensive systems. [12]

UML has many different models/diagrams, with different viewpoints for the

stakeholders (analysts, coders, testers, users etc…) of the software system.

UML aims to provide a language so expressive that all stakeholders can benefit

from at least one UML diagram.

Some of the most important diagrams are:

1. The Use Case Diagram: How will the system interact with the outside

world/user?

2. The Class Diagram: What objects do we need and how will they be

related?

3. Activity Diagram: How will the activities be carried out?

4. Collaboration Diagram: How will the objects interact?

5. Sequence Diagram: How will the objects interact?

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Visual_modeling

 23

4.3.2 Use Case Diagrams

1. Administrator: able to login and create new forms, view existing forms’ data, search

through the forms and create new data collector accounts.

 uc Administrator

Web UI

Administrator

Login

Add New Form

View Form Data

View Form Data

Create New Data

Collector

Search

Browse

«include»

«include»

«include»

«include»

«extend»

«extend»

Fig 4.1 –Administrator Use Case

Use case above is showing the tasks performed by the Administrator which are: login,

add new form, view form data, search form data and add new data-collector.

 24

2. Web-Application System: interface to the administrator for the design and

creation of the database table and mobile web-page for user defined

form/survey. Hence it will be able to create new Database Tables and generate

appropriate mobile web-page for the form.

 uc WebApplication

System

Web Application

Create Database

Tables

Create Mobile

Web-Pages

Display Info

 Fig 4.2 –WebApplication Use Case

Use case above is showing the tasks performed by the System which are: interact with

Administrator (UI), Create Database Tables, and Create mobile web-pages.

 25

3. Data Collector: login and browse forms, search forms by keywords, save data to the

database.

 uc Data Collector

Mobile Web-Page

Data Collector

Login

Browse Forms

Search Forms

Sav e Data

«include»

«include»

«include»

 Fig. 4.3 – Data Collector Use Case

Use case above is showing the tasks performed by the Data-Collector (Using Mobile)

which are: login to their account, browse/search forms, fill and save data.

 26

4.3.3 Class Diagram:

The structure of the classes is as per the asp.net pages of the project

(as shown in figure 4.4).
 class Class Mo...

System.Web.UI.Page

Account

+ con: SqlConnection = new SqlConnecti...

Page_Load(object, EventArgs) : void
BindData() : void
updatebtn_Click(object, EventArgs) : void
cancelbtn_Click(object, EventArgs) : void
homebtn_Click(object, EventArgs) : void
accountbtn_Click(object, EventArgs) : void
logoutbtn_Click(object, EventArgs) : void
passbtn_Click(object, EventArgs) : void
cancelpassbtn_Click(object, EventArgs) : void

System.Web.UI.Page

Home

+ con: SqlConnection = new SqlConnecti...

+ getuserid() : string
+ ViewForms() : void
+ ViewCollectors() : void
Page_Load(object, EventArgs) : void
logoutbtn_Click(object, EventArgs) : void
Searchbtn_Click(object, ImageClickEventArgs) : void
collectorearchbtn_Click(object, ImageClickEventArgs) : void
accountbtn_Click(object, EventArgs) : void
homebtn_Click(object, EventArgs) : void
txtqbtn_Click(object, EventArgs) : void
numqbtn_Click(object, EventArgs) : void
mcqbtn_Click(object, EventArgs) : void
dateqbtn_Click(object, EventArgs) : void
reset_Click(object, EventArgs) : void
lblqbtn_Click(object, EventArgs) : void
addquestion_Click(object, EventArgs) : void
+ GetPathaspx(string) : string
+ CreateFormaspx(string) : void
+ GetPathcs(string) : string
+ CreateFormcs(string) : void
saveformbtn_Click(object, EventArgs) : void
cancelbtn_Click(object, EventArgs) : void
createcollectorbtn_Click(object, EventArgs) : void
resetcollectorfieldsbtn_Click(object, EventArgs) : void
formDeletebtn_Click(object, EventArgs) : void
addmcqbtn_Click(object, EventArgs) : void
clearmcqbtn_Click(object, EventArgs) : void
deletecollectorbtn_Click(object, EventArgs) : void
viewdatabtn_Click(object, EventArgs) : void
questiondelbtn_Click(object, EventArgs) : void

System.Web.UI.Page

Login

+ con: SqlConnection = new SqlConnecti...

Page_Load(object, EventArgs) : void
Loginbtn_Click(object, EventArgs) : void
forgotPWbtn_click(object, EventArgs) : void
changepwbtn_Click(object, EventArgs) : void
backbtn_click(object, EventArgs) : void

System.Web.UI.MobileControls.MobilePage

MobileHome

+ con: SqlConnection = new SqlConnecti...

loginbtn_Click(object, EventArgs) : void
savedetailsbtn_Click(object, EventArgs) : void
+ getowner() : string
+ getuserid() : string
+ ViewForms() : void
+ checksecretdetails() : bool
Page_Load(object, EventArgs) : void
filterbtn_Click(object, EventArgs) : void
searchbtn_Click(object, EventArgs) : void
pwChangebtn_Click(object, EventArgs) : void
forgotbtn_Click(object, EventArgs) : void
passchangebtn_Click(object, EventArgs) : void
gotohomebtn_Click(object, EventArgs) : void
forgotpwbtn_Click(object, EventArgs) : void
logoutbtn_Click(object, EventArgs) : void

System.Web.UI.Page

NewAccount

- con: SqlConnection = new SqlConnecti...

Page_Load(object, EventArgs) : void
CreateUserbtn_Click(object, EventArgs) : void
Resetbtn_Click(object, EventArgs) : void

Fig. 4.4 – Class Diagram

 27

4.3.4 Activity Diagrams

1. Administrator Activity:
 act Admin Activ ity

Start

Login

Authentication

Forms Data Collectors

[Successful]

[Failed]

View Form Data

New Form

Delete Form Data New Data Collector View Info

Delete Collector

Save Changes

Logout

Fig. 4.5 – Administrator Activity

 28

2. Data Collector Activity:

 act Data Collector

Start

Login

Authentication

Search Forms Browse Forms

[Successful]

[Failed]

Save Data

Logout

Fill Form

Select Form

Fig. 4.6 – Data Collector Activity

 29

4.3.5 Sequence Diagrams

1. User Login:

Fig. 4.7 – User Login Sequence

2. Search Form Data:

Fig. 4.8 – Search Form Data Sequence

 30

3. Create Form:

 Fig. 4.9 – Create Form Sequence

4. Collect Data:

 Fig. 4.10 – Collect Data Sequence

 31

4.3.6 Collaboration Diagrams

1. User Login:

 sd User Login

User

WebUI
Database1. Browse to Login Page

2. login(username,password)

3. Execute Query

4. Validate(username,password)

5. Return resultSet

6. if(Login Success) - Homepage
else - Login Page (Retry)

 Fig. 4.11 – User Login Collaboration

2. Search Form Data:

 sd Search Form Data

Administrator

WebUI1. Logged In - Homepage

2. SearchForm(keyword)

Database
3. Execute Search Query

4. Retrieve Information

5. Search Query resultSet

6. if(found) - Show Results
else - Error Not found, retry.

 Fig. 4.12 – Search Form Data Collaboration

 32

3. Create Form:

 sd Create Form

Administrator

WebUI
1. Logged In - Homepage

2. Desgin New Form

Database

WebServer

3. Execute Query - create table

4. Create
Table(s) in DB

5. Return result

6. Generate Code

7. Create
Mobile Web
Page(s)

8. Result - New Form Created Successfully /
Error in Creation

9. Show Outcome - Success / Error

 Fig. 4.12 – Create Form Collaboration

4. Collect Data:

 sd Collect Data

DataCollector

WebUI Database
1. Logged In - Homepage 3. Select Form

2. Search / Browse Forms

4. Retrieve
Form

5. if(found) - Show Form
else - New Search

6. Fill Form
7. Execute Insert Query

8. Insert data
to table(s)

9. result10. Outcome - Success / Error

 Fig. 4.13 – Collect Data Collaboration

 33

CHAPTER 5

IMPLEMENTATION

5.1 Introduction

This section discusses the implementation of the system, it is based on the system

design in the previous chapter, but due to emerging requirements throughout

the implementation iterations, the completed system contains a number of

additions and differences in design.

5.2 Plan and Methodology

In alignment with the mixture of Object Oriented and Incremental Development

methodology that was used, the build was split into time boxes to gradually

accomplish the project objectives, due to the incremental iterative nature of the

development each time box was split into a number of iterations with most time

allocated to the important (core) requirements of the system.

Once these requirements were fulfilled, the features were reviewed and

constantly tested to debug any errors discovered and add additional features

needed to be incorporated into the system hence keeping the development

process synchronized with the newly emerging changes required.

Table: 5.1 Time-boxes

Time-box Task Time (approx.)

1 Website Design and Coding 20 days

2 Database Design 10 days

3 .NET Mobile Website 10 days

4 Website(.NET Mobile Code Generation) 30 days

5 Website (Database Tables Generation) 30 days

 34

As illustrated in (Table 5.1), the first time box was used to develop the interface

design of the website.

This includes master pages and CSS style sheets used for giving a common look

and feel to all the pages of the website, and using AJAX-Control toolkit to make

the use of the website as interactive as possible. This was followed by

implementing the basic functionalities of the website (i.e. login, create account,

view data, edit account information, log out).

The second time box was for the database design, the simplest part to implement

due to the nature of the system, only required a couple of Database Tables: User

Accounts and another for the Forms.

The third time box was for the implementation of web page for the mobile forms,

this took lesser time compared to the website implementation due to simplicity

of the design and limited features of mobile web pages to be used solely for

filling up data into the forms. The basic features are: login, search, view forms,

logout.

The fourth time box was used to implement the interface for Creating Forms and

implementing the code generation for .NET Mobile (aspx pages) as well as the

code behind (.cs files) for the forms designed, this was the most important

feature of the project and was highly complex due to various options provided to

the users for designing a form with different question types with the appropriate

validation options.

The fifth time box was used to generate the appropriate DDL statements for the

generation of corresponding database table to store the data collected by the

form. Also the generation of insert command for updating the record into that

 35

table once the collector clicks “save” on the form web page. This was equally

important and complex as the web page code generation hence given the big

effort time.

5.3 Design Additions

Some of the overlooked features of the website in the design stage were later

implemented as general improvements on the system, these features include:

forgot password/change password solution, editing personal account details,

viewing form data on the website, option to delete form pages as well as

database the table. The last addition, none the less a very important one was the

option to export data of a form to an excel file. This feature is particularly useful

for the analysis of the respective data. It has been implemented with the aid of

GemBoxSpreadSheetFree .NET Component

5.4 Website Interface

This section describes the implementation of the website interface; it allows the

user to use the data collection system by giving functionalities such as: view

data, create forms and data collectors.

Fig 5.1 Color Scheme

Figure 5.1 above, shows the color scheme used for the entire website to maintain

a consistent look.

The interface is based on AJAX Accordion Panes, figure 5.2 shows the interface

screenshot for the create form feature in the home page of the website.

 36

Fig. 5.2 Interface

5.5 Problems Encountered

During the implementation phase some problems were encountered, the

following section outlines these issues. They differ in degree of difficulty and

significance.

1. AJAX Controls design issues.

2. Lack of control validation options.

3. Lack of Visual Studio support for mobile web pages.

 37

5.5.1 AJAX Controls design issues

The first problem was due to the use of AJAX Control

“Accordion Panes” for implementing the website interface caused the drag and

drop of controls from the VS toolbox to be non-functional.

Due to the complex nature of the website this feature could have been a great

help in order to arrange and place the controls in the desired layout moreover

even the customization of the controls from the IDE properties tab was not

working, the only way to implement the content inside the accordion control was

the use of code by hand.

This issue was a challenge rather than a problem, it was overcome and moreover

it had its benefits:

- The layout was designed manually using tables and CSS.

- Gave me a better control over the controls and the various properties by

manually writing everything.

- This issue greatly helped in the knowledge code generation of the .aspx

pages for the mobile web pages by giving me a much better

understanding of the controls than I did have already.

5.5.2 Lack of validation support

Another problem encountered controls like calendar, selectionlist in the asp.NET

Mobile framework do not support the built-in validation controls (required field

validator, custom validator, regular expression and others).

The validation of the data collection forms was an integral requirement of the

project, and hence the issue had to be resolved manually. There were a number

of possible workarounds, solving the problem programmatically, create a user

 38

control supporting the existing validation controls and is similar to the built-in

control, create user defined validation controls.

The first workaround was used to overcome the issue as it required relatively

less programming effort than the other two approaches.

The solution acted similarly to the required field validator, the form would not

be submitted unless the corresponding required field had a value (using if

condition).

5.5.3 Unavailability of tools for testing mobile web pages

The third problem faced was unlike Visual Studio 2005, the newer Visual Studio

2008 no longer supports design view for mobile web pages, i.e. no drag and drop

from the controls toolbox and no preview available in the design view, the only

way is to manually write the controls with the help of IntelliSense provided.

Moreover, Visual Studio did not provide any built-in simulator for viewing the

web pages; the Microsoft support mentioned links to download the program but

the all links mentioned were dead – [13]

The solution, after a lot of searching over the internet was to download the

OpenWave v.7 simulator from a 3rd party website.

Fig. 5.3 Openwave V.7

 39

CHAPTER 6

TESTING

6.1 Introduction

The purpose of the testing is the practical implementation of the web application

and hence verifying if the project’s requirements, aims and specification have

been met.

Firstly the system configuration / requirements for the optimal performance of

the system will be outlined.

Secondly all the features of the system will be used, demonstrating the

output/result for each action. The testing process and its result are illustrated by

the appropriate screenshots.

6.2 Optimal Performance

This section takes a look at the optimal performance requirements for the

website; this is based on the observations from the testing of the website once the

implementation was completed.

The key requirements observed during the testing are:

1. Java Script and CSS enabled Web Browser – (Internet Explorer 7)

2. Screen resolution – 1024 x 768 – (Recommended higher)

3. Microsoft SQL Server Express 2008

4. Internet enabled mobile phone (Java script enabled browser)

 40

6.3 Functional Testing and Evaluation

In this section all the functions of the website are tested and the results are

illustrated with appropriate screenshots.

6.3.1 Login

The default page to open when accessing the MobiCollect website is the login

page, it functions as shown in (figure 6.1) below.

Fig. 6.1 Login Page

 41

6.3.2 Registration

The page for signup as a new user for the website, it is validated appropriately;

also checks and gives an error message if the username is taken already.

The registration page is shown in (figure 6.2 below).

Fig. 6.2 Signup

The above test created a new user account for MobiCollect test purpose, this

account will be used to login and continue the testing of the website.

Account Details: Username: testuser, Password: testpass

 42

6.3.3 Forgot Password

The following screenshot (figure 6.3) shows the interface for helping a user reset

their password in case forgotten.

Fig. 6.3 Forgot Password

6.3.4 Homepage

The next set of screenshots demonstrates the testing of the homepage (user is

redirected upon successful login).

Fig. 6.4 Homepage

 43

6.3.5 Create Form

In this section of testing a form with 1 question from each available type will be

used to create “TestForm” (As shown in figures 6.5-6.10).

Fig 6.5 Create Form – Label

Fig 6.6 Create Form – Text

 44

Fig 6.7 Create Form – Number

Fig 6.8 Create Form – Multiple Choice

 45

Fig 6.9 Create Form – Date

Fig 6.10 Form save – Success

 46

6.3.6 Create Collector

This section is used for creating data-collector accounts by the user.

The form is shown in the below screenshot (figure 6.11).

Fig. 6.11 Create Collector

A collector account was created during testing in order to test this section as well

as data collection features of the system by using the account from a mobile

device.

Account Details: Username: testcollector, Password: testpass

 47

6.3.7 View Collectors

This section of the homepage displays the existing collector accounts for the user

and allows deleting them (as shown in figure 6.12).

Fig.6.12 View Collector

6.3.8 Data Collection

This section shows the testing of the data collection done by login in to the

collector account (created in section 6.6.2 of Testing) from mobile phone

simulator and using the form (created in section 6.6.1 of Testing).

Login:

User can login to collect
data, forgot password
feature also available.

Secret Q&A:

This page appears only
the first time user logs
in to his account.

Home
Contains links to the
forms available for data
collection.

Form – part 1

TestForm is used for data
collection test.

Form – part 2

TestForm scrolled down
(continuation).

Fig. 6.13 – Mobile Web Page and Data collection

 48

6.3.9 View Forms

In this section the test for “View Forms” segment of the homepage is carried out.

It displays the existing forms to the user and allows deleting them or viewing the

data collected for a particular form (as shown in figure 6.14).

Fig. 6.14 – View Forms and Form Data

 49

6.3.10 Export Data

In this section the test for the export data function is done, the test and its result

can be seen from below in figures 6.15 and 6.16 respectively.

Fig. 6.15 – Export Data

Fig 6.16 – Excel File

 50

6.3.11 Account Page

In this section the test for “Account” page is done.

It has two sections; both the sections are functioning properly.

Fig. 6.17 – Change Account Details

Fig. 6.18 – Change Password

Change Account Details (figure 6.15) - tested by updating the firstname to “Shri”

Change password (figure 6.16) – tested by changing the password to “newtestpass”

6.4 Summary

The testing phase showed the system is properly functioning as per the

screenshots demonstrated, there were a couple of bugs found during the phase

and were all corrected.

For further use of the system for testing the account created in the testing phase

can be used with the credentials: Username: testuser and Password: newtestpass

 51

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Project Achievements

The aim of the project has been to provide a solution that allows users to build a

web application that allows user to create forms that are on the fly generated as

mobile web pages and connected to the organization’s database, to be accessed

from mobile phones for data-collection purpose.

This has been achieved with a system that has been built and tested in the

previous chapters of implementation and testing respectively.

The testing results prove that the project has been a success whilst there being

the potential for the system to be developed further.

The future of the system remains unclear, it is possible the system will be

deployed and made available through the internet or I shall continue working on

the enhancement of the system or incorporate it with an already existing system

as an enhancement.

7.2 Conclusion

The minimum requirements, objectives and deliverables of the project have been

successfully accomplished. Moreover, a number of experts commend the work

and believe that the project has a strong potential. No significant faults were

found with the system, to enhance the system further there has been a few

suggestions and will be well considered for the future work.

 52

7.3 Recommendations for Future Work

The system has a distinct scope for further enhancements, as described earlier in

Section 4 of Chapter 1 in this report. The main areas I see as significant

improvements are:

1. Allow user to select fields in existing database tables to insert data.

This feature would make the project a lot more practical in terms of usage, as

it would allow users to relate between data being collected and would reduce

the memory space consumed by new tables. It can be implemented for any

organization that would use the system according to their database schema.

2. Allow uploading photos from phone memory or taken via camera.

The data currently possible to be collected is simple text based hence an

addition to include images would increase the scope of the project.

3. Allow editing existing forms and backing up data already collected.

It is possible that the user would only want to change a small part of the form

already existing; in such a case this new feature would save a lot of time and

effort as opposed to designing a new form from the scratch.

 53

References:

[1] Wireless Mobile Computing: Rugged PDAs. Retrieved February 27, 2010 from

 <http://www.spiritdatacapture.co.uk/product_technologies_wirelessmobilecomp

uting_PDAs.asp>

[2] Creatability Concepts – FAQ. Retrieved February 27, 2010 from

 < http://www.createabilityinc.com/FAQ.html>

[3] Ronan Cremin, et al.: DotMobi Mobile Web Developer Guide. mTLD, Dublin (2007)

[4] Mathew MacDonald, Mario Szpuszta: Pro ASP.NET 3.5. Apress, New York (2008)

[5] Subhasis Saha, et al. (June 2001) – “Bringing the Wireless Internet to Mobile

Devices”. Retrieved March 01, 2010 from:

 <http://crystal.uta.edu/~kumar/cse6306/papers/three.pdf>

[6] Ian Gilfillan (06.24.2002) – “Introduction to Relational Databases”. Retrieved

 March 01, 2010 from: <http://www.databasejournal.com/sqletc/

article.php/1469521/Introduction-to-Relational-Databases.htm>

[7] Alan Dix, et al.: Human Computer Interaction. Prentice Hall, Europe (1998)

[8] PHYSORG.com, (04.28.2009) - “Open source mobile technology software

 reinventing health care in developing countries”. Retrieved March 14, 2010 from

 <http://www.physorg.com/news160128864.html>

[9] Melisa Loudon (02.18.2009) - “Mobile Phones for Data Collection”. Retrieved

March 26, 2010 from: <http://mobileactive.org/howtos/mobile-phones-data-

collection>

[10] Britta Stromeyer (01.22.2010) - “Text messages save lives – A Business profile on

 FrontlineSMS:Medic”. Retrieved March 26, 2010 from

 <http://businessprofiles.suite101.com/article.cfm/text_messages_save_lives>

[11] OOAD – Wikipedia. Retrieved March 26, 2010 from

<http://en.wikipedia.org/wiki/Object-oriented_analysis_and_design>

[12] UML – Wikipedia. Retrieved March 26, 2010 from

<http://en.wikipedia.org/wiki/Unified_Modeling_Language>

[13] OpenWave Simulator. Retrieved April 06, 2010 from

<http://developer.openwave.com/download/index.html>

http://mobileactive.org/howtos/mobile-phones-data-collection
http://mobileactive.org/howtos/mobile-phones-data-collection
http://businessprofiles.suite101.com/article.cfm/text_messages_save_lives
http://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://developer.openwave.com/download/index.html

